

CHECK YOUR GRASP

MATHEMATICAL REASONING

EXERCISE-I

- The inverse of the statement $(p \land q) \rightarrow r$ is-1.
 - (1) $\tilde{p} \vee \tilde{q} \rightarrow \tilde{r}$ (2) $\tilde{p} \wedge \tilde{q} \rightarrow \tilde{r}$
 - (3) $(\tilde{p} \vee q) \rightarrow \tilde{r}$
- (4) None of these
- 2. $(p \lor q)$ is logically equivalent to-
- (2) $\tilde{p} \rightarrow q$ (3) $p \rightarrow \tilde{q}$ (4) $\tilde{p} \rightarrow \tilde{q}$
- The equivalent statement of $(p \leftrightarrow q)$ is-3.
 - (1) $(p \land q) \lor (p \lor q)$
- (2) $(p \rightarrow q) \lor (q \rightarrow p)$
- (3) $(p \lor q) \lor (p \lor q)$ (4) $(p \lor q) \land (p \lor q)$
- 4. If the compound statement $p \to (p \lor q)$ is false then the truth value of p and q are respectively-
 - (1) T, T
- (2) T. F
- (3) F, T (4) F, F
- The statement $(p \rightarrow \tilde{p}) \wedge (\tilde{p} \rightarrow p)$ is-5.
 - (1) a tautology
 - (2) a contradiction
 - (3) neither a tautology nor a contradiction
 - (4) None of these
- Negation of the statement $(p \land r) \rightarrow (r \lor q)$ is-6.

 - $(1) \stackrel{\sim}{} (p \wedge r) \rightarrow \stackrel{\sim}{} (r \vee q) \qquad (2) \stackrel{\sim}{} (p \vee \stackrel{\sim}{} r) \vee (r \vee q)$
 - (3) $(p \wedge r) \wedge (r \wedge q)$
- (4) $(p \wedge r) \wedge (\tilde{r} \wedge \tilde{q})$
- The dual of the statement $p \wedge [q \wedge (p \vee q) \wedge r]$ 7.
 - (1) $p \vee [q \vee (p \vee q) \vee r]$
 - (2) $p \vee [q \vee (p \wedge q) \vee r]$
 - (3) $\tilde{p} \vee [\tilde{q} \vee (p \wedge q) \vee \tilde{r}]$
 - (4) $\tilde{p} \vee [\tilde{q} \wedge (p \wedge q) \wedge \tilde{r}]$
- 8. Which of the following is correct-
 - (1) $(p \lor q) \equiv (p \land q)$
 - (2) $(p \rightarrow q) \equiv (q \rightarrow p)$
 - (3) $(p \rightarrow q) \equiv (p \land q)$
 - (4) $(p \leftrightarrow q) \equiv (p \rightarrow q) \lor (q \rightarrow p)$
- 9. The contrapositive of p \rightarrow (~q \rightarrow ~r) is-
 - (1) $(\tilde{q} \wedge r) \rightarrow \tilde{p}$
- (2) $(q \rightarrow r) \rightarrow p$
- (3) $(q \vee \tilde{r}) \rightarrow \tilde{p}$
- (4) None of these
- **10**. The converse of $p \rightarrow (q \rightarrow r)$ is-
 - (1) $(q \wedge \tilde{r}) \vee p$
- (2) $(^{\sim} q \vee r) \vee p$
- (3) $(q \wedge \tilde{r}) \wedge \tilde{p}$
- (4) $(q \wedge \tilde{r}) \wedge p$
- 11. If p and q are two statement then $(p \leftrightarrow q)$ is true when-
 - (1) p and g both are true (2) p and g both are false
 - (3) p is false and g is true (4) None of these
- **12.** Statement $(p \land q) \rightarrow p$ is-
 - (1) a tautology
- (2) a contradiction
- (3) neither (1) nor (2)
- (4) None of these

- 13 If statements p, q, r have truth values T, F, T respectively then which of the following statement is true-
 - (1) $(p \rightarrow q) \land r$
- (2) $(p \rightarrow q) \vee \tilde{r}$
- (3) $(p \land q) \lor (q \land r)$
- $(4) (p \rightarrow q) \rightarrow r$
- If statement $p \rightarrow (q \lor r)$ is true then the truth values of statements p, q, r respectively-
 - (1) T, F, T
- (3) F, F, F
- (4) All of these
- 15. Which of the following statement is a contradiction-
 - (1) $(p \land q) \land (\tilde{}(p \lor q))$
- (2) $p \vee (p \wedge q)$
- (3) $(p \rightarrow q) \rightarrow p$
- (4) $p \vee q$
- **16.** The negative of the statement "If a number is divisible by 15 then it is divisible by 5 or 3"
 - (1) If a number is divisible by 15 then it is not divisible by 5 and 3
 - (2) A number is divisible by 15 and it is not divisible by 5 or 3
 - (3) A number is divisible by 15 or it is not divisible by 5 and 3
 - (4) A number is divisible by 15 and it is not divisible by 5 and 3
- 17. Which of the following is a statement-
 - (1) Open the door
 - (2) Do your home work
 - (3) Hurrah! we have won the match
 - (4) Two plus two is five
- 18. The negation of the statement "2 + 3 = 5 and 8 < 10" is-
 - (1) $2 + 3 \neq 5$ and $8 \not< 10$ (2) $2 + 3 \neq 5$ or 8 > 10
 - (3) $2 + 3 \neq 5$ or $8 \geq 10$ (4) None of these
- 19. For any three simple statement p, q, r the statement $(p \land q) \lor (q \land r)$ is true when-
 - (1) p and r true and q is false
 - (2) p and r false and q is true
 - (3) p, q, r all are false
 - (4) q and r true and p is false
- 20. Which of the following statement is a tautology-
 - (1) $(p \lor q) \lor (p \lor q)$ (2) $(p \lor q) \land (p \lor q)$
 - (3) $\tilde{p} \wedge (\tilde{p} \vee \tilde{q})$
- (4) $^{\sim}$ $q \wedge (^{\sim} p \vee ^{\sim} q)$
- 21. Which of the following statement is a contradiction-(1) $(p \lor q) \lor (p \lor q)$ (2) $(p \to q) \lor (p \land q)$
 - (3) $({}^{\sim}p \wedge q) \wedge ({}^{\sim}q)$
- (4) ($p \wedge q$) \vee (q)
- The negation of the statement $q \vee (p \wedge \tilde{r})$ is 22. equivalent to-
 - (1) $\tilde{q} \wedge (p \rightarrow r)$
- (2) $\tilde{q} \wedge \tilde{p} \rightarrow r$
- (3) $^{\sim}$ q \wedge ($^{\sim}$ p \wedge r)
- (4) None of these

- 23. Which of the following is not a statement-
 - (1) every set is a finite set
 - (2) every square is a rectangle
 - (3) The sun is a star
 - (4) Shut the window
- 24. The statement $(p \rightarrow q) \leftrightarrow (p \lor q)$ is-
 - (1) a tautology
 - (2) a contradiction
 - (3) neither a tautology nor a contradiction
 - (4) None of these
- **25**. Which of the following is equivalent to $(p \land q)$
 - (1) $p \rightarrow q$
- (2) $(p \land q)$
- (3) $(p \rightarrow q)$
- (4) None of these
- 26. The dual of the following statement "Reena is healthy and Meena is beautiful" is-
 - (1) Reena is beaufiful and Meena is healthy
 - (2) Reena is beautiful or Meena is healthy
 - (3) Reena is healthy or Meena is beutiful
 - (4) None of these
- 27. If p is any statement, t and c are a tautology and a contradiction respectively then which of the following is not correct-
 - (1) $p \wedge t \equiv p$
- (2) $p \wedge c \equiv c$
- (3) $p \vee t \equiv c$
- (4) $p \lor c \equiv p$
- 28. If S*(p, q) is the dual of the compound statement S(p, q) then $S^*(\tilde{p}, \tilde{q})$ is equivalent to-
 - (1) S(~p, ~q)
- (2) $^{\sim}$ S(p, q)
- (3) $^{\sim}$ S*(p, q)
- (4) None of these
- 29. Which of the following is a statement-
 - (1) I am Lion
 - (2) Logic is an interesting subject
 - (3) A triangle is a circle and 10 is a prime number
 - (4) None of these

- 30. If p is any statement, t is a tautology and c is a contradiction then which fo the following is not correct-
 - (1) $p \wedge (\tilde{c}) \equiv p$
 - (2) $p \vee (\tilde{t}) \equiv p$
 - (3) $t \lor c \equiv p \lor t$
 - (4) $(p \land t) \lor (p \lor c) \equiv (t \land c)$
- 31. If p, q, r are simple statement with truth values T, F, T respectively then the truth value of $((\tilde{p} \vee q) \wedge \tilde{r}) \rightarrow p \text{ is-}$
 - (1) True
- (2) False
- (3) True if r is false
- (4) True if q is true
- 32. Which of the following is wrong-
 - (1) $p \vee p$ is a tautology
 - (2) $\tilde{p} \leftrightarrow p$ is a tautology
 - (3) $p \wedge p$ is a contradiction
 - (4) $((p \land p) \rightarrow q) \rightarrow p$ is a tautology
- 33. The statement "If $2^2 = 5$ then I get first class" is logically equivalent to-
 - (1) $2^2 = 5$ and I donot get first class
 - (2) $2^2 = 5$ or I do not get first class
 - (3) $2^2 \neq 5$ or I get first class
 - (4) None of these
- If statement $(p \vee \tilde{r}) \rightarrow (q \wedge r)$ is false and statement q is true then statement p is-
 - (1) true

- (2) false
- (3) may be true or false (4) None of these
- 35. Which of the following statement are not logically
 - (1) $(p \lor q)$ and $(p \land q)$ (2) $(p \rightarrow q)$ and $(p \land q)$
 - (3) $(p \rightarrow q)$ and $(\tilde{q} \rightarrow \tilde{p})$ (4) $(p \rightarrow q)$ and $(\tilde{p} \land q)$

ANSWER KEY															
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	3	4	2	2	4	3	2	1	1	3	1	4	4	1
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	4	3	4	1	3	1	4	3	3	3	3	2	3	4
Que.	31	32	33	34	35										
Ans.	1	4	3	3	4										

PREVIOUS YEAR QUESTIONS

MATHEMATICAL REASONING

EXERCISE-II

1. The statement $p \rightarrow (q \rightarrow p)$ is equivalent

[AIEEE-2008]

- $(1) p \rightarrow (p \rightarrow q)$
- (2) $p \rightarrow (p \lor q)$
- $(3) p \rightarrow (p \land q)$
- $(4) p \rightarrow (p \leftrightarrow q)$
- **2.** Let p be the statement "x is an irrational number", q be the statement "y is a trascendental number", and r be the statement "x is a rational number iff y is a transcendental number". [AIEEE-2008]

Statement -1: r is equivalent to either q or p.

Statement -2: r is equivalent to $(p \leftrightarrow q)$

- (1) Statement -1 is false, Statement -2 is true
- (2) Statement-1 is true, Statement-2 is false
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- 3. Statement-1: $(p \leftrightarrow q)$ is equivalent to $p \leftrightarrow q$. Statement-2: $(p \leftrightarrow q)$ is a tautology.

[AIEEE-2009]

- (1) Statement-1 is true, Statement-2 is false.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for statement-1.

 $oldsymbol{4}$. Let S be a non-empty subset of R.

Consider the following statement :

p: There is a rational number $x \in S$ such that x > 0 which of the following statements is the negation of the statement p?

[AIEEE-2010]

- (1) There is a rational number $x \in S$ such that $x \le 0$
- (2) There is no rational number $x\,\in\,S$ such that $x\,\leq\,0$
- (3) Every rational number $x \in S$ satisfies $x \le 0$
- (4) $x \in S$ and $x \le 0 \Rightarrow x$ is not rational
- 5. Consider the following statements
 - p : Suman is brilliant
 - q : Suman is rich
 - r: Suman is honest

The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as :- [AIEEE-2011]

- (1) $\tilde{q} \leftrightarrow \tilde{p} \wedge r$
- (2) $\tilde{}$ (p \wedge $\tilde{}$ r) \leftrightarrow q
- (3) $\tilde{p} \wedge (q \leftrightarrow \tilde{r})$
- (4) $(q \leftrightarrow (p \land r))$
- 6. The only statement among the followings that is a tautology is: [AIEEE-2011]
 - $(1) q \rightarrow [p \land (p \rightarrow q)]$
 - (2) $p \wedge (p \vee q)$
 - (3) $p \vee (p \wedge q)$
 - (4) $[p \land (p \rightarrow q)] \rightarrow q$
- 7. The negation of the statement
 "If I become a teacher, then I will open a school",
 is

[AIEEE-2012]

- (1) I will not become a teacher or I will open a
- (2) I will become a teacher and I will not open a school.
- (3) Either I will not become a teacher or I will not open a school.
- (4) Neither I will become a teacher nor I will open a school.

Ϋ́
⋖.
Ä
-
MATICAL
O
≃
4
ӡ
Ź.
エ
_
ঽ
4
က
-5\03-₩
á
22
PART-
⋖
۶.
(BNG
¥
缶
T#02\E
\approx
¥
Š
₹
5
H2/C
≥
Ė
7
ӡ
>
ADVANCED\SMP\MAT
Σ.
ŝ
'n.
ш
0
Z
⋖
≳
9
*
щ
₩.
≤
7
ž
7
2014
5
⋖
٩.
7
Δ
(E)\DATA
Ē
_
NODE6
~
ㅈ
¥
_

ANSWER KEY															
Que.	1	2	3	4	5	6	7								
Ans.	2	1	1	3	2,4	4	2								